Thebaine Adducts with Maleimides. Synthesis and Transformations

E.E.Shults ${ }^{1}$, M.M. Shakirov ${ }^{1}$, G.A. Tolstikov ${ }^{1}$, V.N. Kalinin ${ }^{2}$, and G. Schmidhammer ${ }^{3}$
${ }^{1}$ Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090 Russia
e-mail: schultz@nioch.nsc.ru
${ }^{2}$ Nesmeyanv Institute of Organoelemental Chemistry, Russian Academy of Sciences, Novosibirsk, Russia
${ }^{3}$ Institute of Pharmaceutical Chemistry at Innsbruck University, Austria

Received January 10, 2003

Abstract

Diels-Alder reaction of thebaine with maleimides is structurally specific and yields [7,8,3', ${ }^{4}$ ']-succinimido-endo-ethenotetrahydrothebaines containing N^{\prime}-alkyl, cycloalkyl, aralkyl or aryl substituents. N^{\prime}-[1(S)-hydroxymethyl-2-methylpropyl]-succinimido-6,14-endo-ethenotetrahydrothebaine formed in reaction of S-valinol with ($7 \alpha, 8 \alpha$)-anhydrido-6,14-endo-ethenotetrahydrothebaine. The reduction of the adducts by LiAlH_{4} afforded N 'substituted 7,8-pyrrolidino-endo-ethenotetrahydrothebaines. The reduction of fused succinimides by NaBH_{4} resulted in the corresponding 2 ' α-hydroxylactam derivatives. O-Demethylation of the tetrahydrothebaine pyrrolidine derivatives effected by BBr_{3} afforded compounds of the tetrahydrooripavine series. The O-demethylation of tetrahydrothebaine succinimide derivatives gave rise to the corresponding 6-demethyl-endoethenotetrahydrooripavines. Alkylation conditions were found for N^{\prime}-(4-hydroxyphenethyl)-substituted tetrahydrothebaine succinimide derivatives.

The nature of a substituent in positions 7,8 of morphinane alkaloids in among the most important factors affecting their biological activity [1]. For instance, the opioid analgesic buprenorphine possesses a pharmacological profile interesting for development of antinarcotics [2]. A series of studies treats the influence of a lipophilic substituent at the C^{20} atom of the buprenorphine on the pharmacological activity [3-6]. We previously reported on thebaine cycloaddition to cyclic dienophiles providing $7 \alpha, 8 \alpha$-fused derivatives of 6,14-endo-ethenotetrahydrothebaine [7-10]. Among these thebaine derivatives promising active analgesics were found [11]. Here we report on thebaine (\mathbf{I}) cycloaddition to various maleimides: 4-bromophenyl-substituted (IIa), 4- and 2-methoxy-benzyl-substituted (IIb and IIc), arylethyl-substituted (IId-IIg), cyclohexenylethyl-(IIh), and dimethylamino-ethyl-substituted (III) maleimides. At short boiling of reagents mixture in ethanol N '-substituted $7 \alpha, 8 \alpha$-succin-imido-6,14-endo-ethenotetrahydrothebaines III-IX were obtained as sole reaction products in a $82-96 \%$ yield (Scheme 1).

It should be mentioned that in [12] thebaine adducts were obtained with N-phenyl- and N-benzylmaleimides. Annelation of N-arylsuccinimide fragments at the $\mathrm{C}^{7,8}$
atoms of thebaine was recently shown to afford a group of selective μ-opioid agonists [13].

The other way to succinimide derivatives of endoethenotetrahydrothebaine is a reaction of a thebaine adduct with maleic anhydride XII [14, 15] and amines. The heating of a mixture of compound XII with S-valinol (XIII) in toluene in the presence of triethylamine and molecular sieves (3A) afforded compound XIV. At the use of excess amine XIII a considerable amount of diamide $\mathbf{X V}$ was additionally isolated.

We investigated some transformations of the fused thebaine derivatives synthesized. The additional lipophilic groups were introduced into the molecule of 7,8 -endoethenotetrahydrothebaine (VII) by O-alkylation under the conditions of a phase-transfer catalysis using 1,4-dibromobutane to obtain in 82% yield N^{\prime}-bromobutoxyphenethyl derivative XVI. The reaction of compound XVI with aminoethanol in acetone in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded a mixture of products of O - and N -alkylation XVII and XVIII in 29 and 37\% yield respectively (Scheme 3).

The reduction of adducts III, VII, and XVI with excess LiAlH_{4} in THF resulted in formation of the corresponding $7 \alpha, 8 \alpha$-pyrrolidino-6,14-endo-ethenotetrahydrothebaines

Scheme 1.

Scheme 2.

XII

XIV

XV

XIX-XXI. The partial reduction of the cyclic imides with various reagents $\left[\mathrm{NaBH}_{4}, \quad(i-\mathrm{Bu})_{2} \mathrm{AlH}\right.$, $\left.\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OEt}\right)_{2}\right]$ was considered in detail in review [16]. As a rule a problem of regio- and stereoselectivity arises for the unsymmetrically substituted imides. We found that the reduction of compounds \mathbf{V} and VI with sodium borohydride in THF in the presence of ethanol solution of HCl made it possible to isolate $2^{\prime} \alpha-$ hydroxylactams of endo-ethenotetrahydrothebaine XXII and XXIII in a $73-78 \%$ yield. The reaction is characterized by the regio- and stereospecificity and is apparently governed by the methoxy group attached to C^{6} atom of the morphinane skeleton (Scheme 4).

An interesting result was obtained while investigating the O-demethylation of adducts. Pyrrolidinooripavines XXIV and XXV were cleanly formed at treating compounds XIX and $\mathbf{X X}$ with excess BBr_{3} in chloroform [17]. 3-O-Demethylation of adducts III and IV under
similar conditions is accompanied with 6-O-demethylation and results in diols XXVI and XXVII (yield $79-96 \%$). As seen, here the O-demethylation of the aryl methyl ether in position 3 involves also O-demethylation of the alkyl methyl ether in position 6 of the morphinane skeleton It is presumable that this reaction direction is governed by the carbonyl group of the succinimide moiety. This assumption we confirmed by an example of reaction of compound XIV containing a hydroxyethyl substituent at the nitrogen of the succinimide fragment. Under the standard reaction conditions a mixture was obtained of 6-demethyltetrahydrothebaine (XXVIII) and 6-demethyloripavine (XXIX) in a ratio 1:2, i.e., the demethylation of the alkyl methyl ether is twice faster than the demethylation of the aryl methyl ether. We succeeded in isolating compound XXIX in 73% yield when the reaction mixture was kept for a longer time at room temperature. When tetrahydrothebaine XXIII containing a 2 '-hydroxylactam fragment was brought into reaction 6 -demethyltetra-

Scheme 3.

Scheme 4.

$\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}(\mathbf{X I X}), 4-\mathrm{OHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2}(\mathbf{X X}),\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Br}(\mathbf{X X I}), 2-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}(\mathbf{X X I I}), \mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}(\mathbf{X X I I I})$.
hydrothebaine XXX was obtained in 69% yield. Thus the substituent in the succinimide fragment significantly affects the result of the O-demethylation reaction. This influence is apparently due to the stabilization of the reagent complex with the ether oxygen atom through formation of a six-membered organoboron cyclic intermediate with the oxygen-containing substituent of the succinimide fragment. The selective demethylation of the alkyl methyl ether in the presence of aryl methyl ether was also observed in demethylation by $\mathrm{LiAlH}_{4}{ }^{-}$

THF in the presence of CCl_{4} of traces of thevinols containing C^{20}-hydroxy or C^{20}-amino substituents [18] (Scheme 5).

The structure of the synthesized endo-ethenotetrahydrothebaines and oripavines was established by analysis of spectral data (Tables 1-3). In the IR spectra of adducts III-XI and compounds XIV, XVI-XVIII, and XXVIXXIX appear characteristic bands of stretching vibrations in the regions $1270-1251(\mathrm{C}-\mathrm{N}), 1696-1706$, and $1762-$

Scheme 5.

XXVIII

XXIX

XXX
$1775(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$. In the IR spectrum of diamide $\mathbf{X V}$ the absorption bands of amide groups are clearly seen at $1654 \mathrm{~cm}^{-1}$. The amide band in 2'-hydroxy-endo-ethenotetrahydrothebaines XXII, XXIII, and XXX is shifted to lower frequencies. In pyrrolidino-endo-ethenotetrahydrothebaines and oripavines XIX-XXI, XXIV, and XXV these absorption bands of amide groups disappear, in the spectra of N -aryl-substituted derivatived XIX and XXIV a strong band of stretching vibrations at 1595$1605 \mathrm{~cm}^{-1}$ is observed ($\mathrm{N}-\mathrm{Ar}$). A special feature of the IR spectra of the O-demethylation products XXVI, XXVII, and XXIX is the presence of absorption bands of hydroxy groups at 3240,3380 or $3440 \mathrm{~cm}^{-1}$. The difference in the absorption of hydroxy groups for compounds XXVIII and XXIX is revealed in the spectrum of 3-hydroxy derivative XXIX by appearance of an additional absorption band at $3450 \mathrm{~cm}^{-1}$. The stretching vibrations of hydroxy group in position 2' give rise in the spectra of compounds XXII, XXIII, and XXX to narrow bands in the region $3398-3415 \mathrm{~cm}^{-1}$.

The compounds were assigned to the endo-series basing on the NMR spectra. In the ${ }^{1} \mathrm{H}$ NMR spectra of adducts III-XI and all derivatives thereof (Table 1) the endo-orientation of the bridge was confirmed by the
considerable difference in the chemical shifts of H^{18} and H^{19} protons, and also by existence of coupling between the protons H^{5} and $\mathrm{H}^{19}\left({ }^{4} J 1.2-1.5 \mathrm{~Hz}\right)(W$-shaped position of the bonds) (Table 1). The comparison of ${ }^{1} \mathrm{H}$ NMR spectra of adducts III-XI, and XIV reveals the effect of the substituent on the nitrogen atom of the succinimide fragment on some spectral parameters, namely on the chemical shifts of the skeleton protons $\mathrm{H}^{7,8,18,19}$. For instance, in the spectrum of $\mathrm{N}^{\prime}-p$-bromo-phenyl-substituted adduct III these protons are shifted downfield with respect to the corresponding protons in the spectra of compounds with aralkyl ($\Delta \delta 0.11-0.24$ for $\mathrm{H}^{7,8}$ and $0.18-0.24$ for $\mathrm{H}^{18,19}$) and alkyl ($\Delta \delta 0.07-0.13$ for $\mathrm{H}^{7,8}$ and $0.09-0.11$ for $\mathrm{H}^{18,19}$) substituents at the nitrogen of the succinimide moiety. It should be emphasized that protons $\mathrm{H}^{7,8,18,19}$ in the succinimide thebaine derivatives are located downfield from the corresponding protons in adduct XII. The reduction of the succinimide fragment into a pyrrole one results in an upfield shift of the resonances from protons $\mathrm{H}^{7 \beta}, 8 \beta, 9 \alpha$, and also in increased difference between the chemical shifts of protons $\mathrm{H}^{10,15,16}$ of the piperidine ring.

The characteristic features of the ${ }^{1} \mathrm{H}$ NMR spectrum of diamide $\mathbf{X V}$ consist in the downfield shift of the protons
from the olefin double bond in the bridge and in the upfield shift of the proton signal from $\mathrm{H}^{9 \alpha}(\Delta \delta 0.17 \mathrm{ppm})$ caused by the substituent in the cis-position at the atom C^{8}. The value of the vicinal coupling constant for protons $\mathrm{H}^{7,8}$ $(J 11.6 \mathrm{~Hz})$ corresponds to the cisoid location of the substituents [19].

The position of the hydroxy group at the C^{2} atom and its α-orientation in compounds XXII and XXIII was proved by NOESY experiment. At suppressing the signals of the protons from the methoxy group attached to C^{6} atom the NOE-effect was observed for protons $\mathrm{H}^{5}, \mathrm{H}^{7}$ and H^{2}; suppression of the signal from the hydroxy group results in the NOE-effect on the protons from the bridging double bond $\mathrm{H}^{18,19}$. In the spectra of compounds XXII and XXIII a downfield shift of the olefin protons $\mathrm{H}^{18,19}$ and proton signal from H^{8} should also be mentioned. Even stronger downfield displacement of the mentioned signals is characteristic of the ${ }^{1} \mathrm{H}$ NMR spectrum of the $6-\mathrm{O}-$ demethylation product hydroxylactam $\mathbf{X X X}$ (Table 1).

In Table 2 are presented the ${ }^{13} \mathrm{C}$ NMR spectra of new endo-ethenotetrahydrothebaines III-XI and also that of adduct XII for the sake of comparison. The formation of the O- and N -alkylation products XVII and XVIII is derived from the presence of the signals from carbon atoms $\underline{\mathrm{CH}}_{2} \mathrm{O}(\delta 66.72,64.14), \mathrm{CH}_{2} \mathrm{NH}_{2}(\delta 44.67)$ for amine XVII and $\underline{\mathrm{C}}_{2} \mathrm{NH}(\delta 51.92,51.86), \mathrm{CH}_{2} \mathrm{OH}$ ($\delta 67.44 \mathrm{ppm}$) for alcohol XVIII.

We should call attention to the downfield shift of the resonance from C^{5} atom in the products of complete (XIX-XXI) and partial (XXII and XXIII) reduction of the succinimide fragment (Table 3). A similar downfield shift was observed for atom C^{5} in the spectrum of oripavine XXV. Besides the spectra of 6-demethyloripavines XXVI, XXVII, XXIX, and XXX are characterized by a downfield shift of the signal from C^{2} atom and an upfield shift of the peaks from C^{3} and C^{6} (Table 3).

Mass spectra of adducts III-V, IX, XI, and XIV and of their derivatives XVI, XVIII, XXII, and XXIII contain molecular ion peaks (Table 1), and also a peak of a fragment ion with $\mathrm{m} / \mathrm{z} 310$ (thebaine-1) (of abundance 100, $65.91,65.88,60.63,60.92,100,100,100,87.12,98.08 \%$ respectively) corresponding to the ion generated by retrodiene cleavage of the compounds. This fragment ion of the retrodiene reaction (with $\mathrm{m} / \mathrm{z} 282$ and 296 , abundance 100%) appears in the mass spectra of 6 -demethyloripavines XXVI, XXVII, and XXIX, and 6-demethyltetrahydrothebaine XXVIII respectively. The main fragment ion for the fused pyrrolidino-endo-ethenotetra-
hydrothebaines XX and XXI is a peak of $\mathrm{m} / \mathrm{z} 393$ (100%) corresponding to the cleavage with formation of N-methylenepyrrolidino[6,14, 3',4']ethenotetrahydrothebainium ion. For compound $\mathbf{X X V}$ the most abundant peak has $m / z 379$ (100%).

Thus the Diels-Alder reaction of thebaine with N -substituted maleimides occurs stereoselectively affording the products of the β-attack of the dienophile: $7 \alpha, 8 \alpha$-succinimido-6,14-endo-etheno-6,7,8,14-tetrahydrothebaines β ($6 \alpha, 14 \alpha$-ethenoisomorphinanes). The reduction of adducts provided $7 \alpha, 8 \alpha$-fused pyrrolidinoor $2^{\prime} \alpha$-hydroxy-5'-oxopyrrolidinotetrahydrothebaines. Depending on the nature of the substituent in the fused fragment the O-demethylation effected by BBr_{3} yielded C^{6} - (demethylation of alkyl methyl ether) and (or) C^{3} (demethylation of aryl methyl ether) hydroxy derivatives of isomorphinanes.

EXPERIMENTAL

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were registered on spectrometers Bruker AC-200 [operating frequencies $200.13\left({ }^{1} \mathrm{H}\right)$ and $\left.50.32\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}\right]$ and Bruker DRX500 [operating frequencies $500.13\left({ }^{1} \mathrm{H}\right)$ and $125.76\left({ }^{13} \mathrm{C}\right)$ MHz] from 5% solutions in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$, or CCl_{4}. The assignment of signals in the NMR spectra were done with the use of various proton-proton and carbon-proton procedures of correlation spectroscopy (COSY, COLOC, CORRD), ${ }^{1} \mathrm{H}$ 2D-NMR spectroscopy, spectra with Overhauser effect NOESY, and also the data from [7, 8]. ${ }^{19} \mathrm{~F}$ NMR spectra of 10% solutions of adducts VIII and IX were registered on spectrometer Bruker WP-200-SY, internal reference $\mathrm{C}_{6} \mathrm{~F}_{6}$. IR spectra were recorded on Vector-22 instrument from samples pelletized with KBr . UV absorption spectra were taken on spectrometer HP 8453 UV Vis in ethanol (C $10^{-4} \mathrm{M}$). For recording mass spectra, molecular weight estimation, and elemental analysis we used high resolution mass spectrometer Finnigan MAT-8200 (ionizing electrons energy 70 eV , vaporizer temperature $270-300^{\circ} \mathrm{C}$). Reaction progress was monitored by TLC on Silufol UV254 plates. The reaction products were isolated by column chromatography on silica gel (eluent chloroform) or on neutral or alkaline aluminum oxide (eluents chloroform, chloroform-ethanol, 200:1-10:1).

The elemental analyses of compounds synthesized are consistent with the calculated values.
S-Valinol (XIII), mp 31-32 ${ }^{\circ} \mathrm{C}$, bp. $75^{\circ} \mathrm{C}(6 \mathrm{~mm} \mathrm{Hg}$), $[\alpha]_{578}^{20}+17^{\circ}$ (C 11, EtOH) was obtained by procedure from [20].

Table 1. Yields, melting points, data of mass, IR, and ${ }^{1} \mathrm{H}$ NMR spectra of N^{\prime}-substituted $7 \alpha, 8 \alpha$-succinimido- $6 \alpha, 14 \alpha$-endo-etheno-6,7,8,14-tetrahydrothebaines III, XIV, XVI-XVIII, $7 \alpha, 8 \alpha$-pyrrolidino- $6 \alpha, 14 \alpha$-endo-etheno-6,7,8,14-tetrahydrothebaines XX-XXII, corresponding oripavines XXV, XXVII, XXIX, and 6 -demethyltetrahydrothebaines XXVIII, XXX ${ }^{\text {a }}$

号	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$, (solvent)	Formula, m / z calc $/ m / z \exp$ $\left(I_{\text {rel }} \%\right)$	IR spectrum,	${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$
III	91	$\begin{aligned} & 245-246 \\ & \text { (ethanol) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Br}, \\ & 562.11037 / 562.10925, \\ & 562(66), 389(33), \\ & 346(22), 311(45), \\ & 310(100), 355(52), \\ & 229(34), 216(25), \\ & 188(30) \end{aligned}$	$\begin{aligned} & 710,796,810, \\ & 886,954,1012, \\ & 1051,1069, \\ & 1110,1220, \\ & 1250,1500, \\ & 1598,1628, \\ & 1706,1775, \\ & 3068,3454 \end{aligned}$	$1.93 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{15}\right), 2.41 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.43$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{10}\right.$, $J 18.7,6.6), 2.48$ d.d.d (1H, $\left.\mathrm{H}^{16}, J 12.4,4.0,2.2\right), 2.55$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.6, J_{\text {vic }} 12.1\right.$ and 1.5$), 3.15 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 8.1\right)$, $3.23 \mathrm{~d}\left(1 \mathrm{H}_{,} \mathrm{H}^{10 \beta}, J_{\mathrm{gem}} 18.7\right), 3.68 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right), 3.79 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.98 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J 6.6\right), 4.36 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 8.1\right)$, $4.66 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.5\right), 5.42 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.82 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}$, $\mathrm{H}^{18}, J 8.7$ and 1.4$), 6.55 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.1\right)_{5}, 6.63 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}\right.$, $J 8.1), 7.04 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2^{\prime}, 6^{\prime}}\right), 7.49 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{3,5^{\prime}}\right)$
XIV	72	$\begin{gathered} 266-267 \\ \text { (ethyl } \\ \text { acetate) } \end{gathered}$	$\begin{aligned} & \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}, \\ & 494.24167 / 494.24265, \\ & 494(100), 479(21), \\ & 319(64), 311(27), \\ & 310(71), 276(68), \\ & 255(34), 229(31), \\ & 162(28), 44(33) \end{aligned}$	718, 748, 771, 818, 948, 984, 1013, 1047, 1083, 1145, 1228, 1252, 1268, 1500, 1599, 1630, 1694, 1764, 3060, 3445, 3489	$0.70 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 0.94 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 1.90$ d.d.d ($1 \mathrm{H}, \mathrm{H}^{15}, J 13.2,5.4$ and 1.4$), 1.98 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{15}, J_{\text {gem }} 13.2\right.$, $J 12.2,6.0), 2.26 \mathrm{~m}(1 \mathrm{H}, \mathrm{H}-i-\mathrm{Pr}), 2.46 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.44 \mathrm{~m}$ $\left(2 \mathrm{H}, \mathrm{H}^{10,16}\right), 2.61$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.6, J_{\text {vic }} 12.2\right.$ and 1.4), $3.15 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 8.3\right), 3.23 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\text {gem }} 18.6\right), 3.62 \mathrm{~m}$ and $3.72 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69 \mathrm{C}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right), 3.79 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.94 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, \mathrm{CH}, J 7.0$ and 5.6$), 3.99 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}\right.$, $J 6.4), 4.23 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 8.3\right), 4.67 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.4\right), 5.38 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.75$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and 1.4$), 6.54 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{1}, J 8.2\right), 6.62 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right)$
XVI	82	$\begin{gathered} \text { 180-182 } \\ \text { (ethyl } \\ \text { acetate) } \end{gathered}$	$\begin{aligned} & \mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Br}, \\ & 662.15 \\ & 621(17), 527(39), \\ & 512(25), 311(34), \\ & 310(100), 294(23), \\ & 255(39), 229(28), \\ & 216(21), 162(34), \\ & 55(37), 28(96) \end{aligned}$	$\begin{aligned} & 747,820,922, \\ & 944,999,1017, \\ & 1051,1110, \\ & 1159,1213, \\ & 1250,1501, \\ & 1511,1612, \\ & 1632,1699, \\ & 1769,3453 \end{aligned}$	$1.80 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{15}\right), 1.90 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ and $\left.1 \mathrm{H}, \mathrm{H}^{15}\right), 2.47 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.45 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{10,16}\right), 2.57$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.4, J_{\text {vic }} 12.1\right.$ and 1.5$), 2.67$ d.t $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.01$ $\mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 8.0\right), 3.26 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10}, J 18.7\right), 3.43 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.55 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.57 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right), 3.78 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{OC}^{3}\right), 3.90 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.93 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9}, J 6.7\right), 4.20 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{8}\right.$, $J 8.0), 4.62 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.6\right), 5.23 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.60 \mathrm{~d} . \mathrm{d}$ $\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and 1.6$), 6.54 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.2\right), 6.61 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{2}, J 8.2\right), 6.74 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2,6}, J 8.7\right), 7.04 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{3,5}, J 8.6\right)$
XVII	29	$\left\lvert\, \begin{aligned} & 162-164 \\ & \text { (ethanol) } \end{aligned}\right.$	$\begin{aligned} & \mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{7}, \\ & 643.32 \end{aligned}$	$\begin{aligned} & 722,820,921, \\ & 944,998,1059, \\ & 1009,1160, \\ & 1250,1511, \\ & 1610,1627, \\ & 1700,1760, \\ & 3445 \end{aligned}$	$1.83 \mathrm{~m}\left(4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.88 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{15}\right), 1.95 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{15}\right), 2.43$ $\mathrm{m}\left(1 \mathrm{H}, \mathrm{H}^{16}\right), 2.43 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.48 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{10}\right), 2.54$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.4, J_{\text {vic }} 12.1\right.$ and 1.8$), 2.68 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $3.01 \mathrm{~d}\left(1 \mathrm{H}_{,} \mathrm{H}^{7}, J 7.9\right), 3.22 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10}, J 18.6\right), 3.58 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.64 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.67 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right), 3.79 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.86 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.95 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{9}, J 6.7\right), 4.16 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 7.9\right), 4.62 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \mathrm{~B}}, J 1.6\right), 5.26$ $\mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.48 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.60 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and 1.6), $6.53 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{I}, J 8.2\right), 6.61 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right), 6.74 \mathrm{~d}$, $6.75 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2,6^{\prime}}, J 8.7\right), 7.03 \mathrm{~d}, 7.08 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{3^{\prime}, 5^{\prime}}, J 8.6\right)$
XVIII	37	$142-144$ (ethyl acetate)	$\begin{aligned} & \mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{7}, \\ & 643.32 \end{aligned}$	$\begin{aligned} & 750,820,944, \\ & 998,1052, \\ & 1017,1051, \\ & 1110,1159, \\ & 1213,1250, \\ & 1501,1511, \\ & 1612,1632, \\ & 1699,1769, \\ & 3453 \end{aligned}$	$1.66 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 190$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}\right.$, $J 13.4,2.3,1.8), 1.93$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.4,12,1,3.2\right), 2.27 \mathrm{~m}$ and $2.62 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.41 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.45 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{H}^{10,16}\right), 2.54$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.4, J_{\text {vic }} 12.1\right.$ and 1.8$)$, 2.67 d.t $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.99 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 7.9\right), 3.22 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10}\right.$, J 18.7), 2.48 m and $3.24 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.56 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.66 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right), 3.79 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.82$ and 3.88 m $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)_{5 \beta} 3.95 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9}, J 6.7\right), 4.15 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{8}, J 7.9\right), 4.60 \mathrm{~d}\left(1 \mathrm{H}^{2} \mathrm{H}^{5 \beta}, J 1.6\right), 5.25 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right)$, $5.61 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and 1.6$), 6.53 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.2\right), 6.61 \mathrm{~d}$ $\left(1 \mathrm{H}^{\prime}, \mathrm{H}^{2}, J 8.2\right), 6.748 \mathrm{~d}, 6.752 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2,6^{\prime}}, J 8.7\right), 7.05 \mathrm{~d}(2 \mathrm{H}$, $\mathrm{H}^{3^{\prime}, 5^{\prime}}, J$ 8.6)

Table 1. (Contd.)

$\begin{aligned} & \text { 号 } \\ & \text { Ö } \\ & \text { O } \end{aligned}$	$\begin{gathered} \text { Yield, } \\ \% \end{gathered}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$, (solvent)	$\begin{gathered} \text { Formula, } \\ m / z \text { calc } m / z \exp \\ \left(I_{\text {rel }} \%\right) \end{gathered}$	IR spectrum, cm^{-1}	${ }^{1} \mathrm{H}$ NMR spectrum, , ppm $(J, \mathrm{~Hz})$
XX	92	$162-164$ (ethanol)	$\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}$, $500.26749 /$ 500.26812, $500(1.6), 394$ $(28), 393(100)$, $152(37)$	$774,829,880$, $932,948,981$, $1018,1053,1109$, $1144,1252,1276$, $1345,1500,1515$, $1598,1615,1631$, $2799,2934,3036$, 3431	1.77 d.d.d (1H, $\left.\mathrm{H}^{15}, J 13.2,4.0,1.5\right), 1.96 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{3}, J 9.2\right)$, 2.10 t.d ($\left.1 \mathrm{H}, \mathrm{H}^{15}, J 13.2,12.5,5.6\right), 2.15$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{2^{\prime}}, J 9.8\right.$, 9.2), $2.33 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.32 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{10}\right), 2.40 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{16}\right)$, 2.48 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.6, J_{\text {vic }} 12.5\right.$ and 1.5$), 2.59 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.65 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 9.2,7.3,8.1\right), 3.09$ d ($1 \mathrm{H}, \mathrm{H}^{9}, J 6.4$), 3.12 t.d ($1 \mathrm{H}, \mathrm{H}^{3^{\prime}}, J 8.1,8.1$), 3.16 t.d (1 H , $\mathrm{H}^{2^{\prime}}, J 9.8$ and 7.3$), 3.20 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{i 0 \beta}, J_{\text {gem }} 19.4\right), 3.49 \mathrm{C}(3 \mathrm{H}$, $\left.\mathrm{H}_{3} \mathrm{OC}^{6}\right), 3.66$ d.d.d (1H, $\left.\mathrm{H}^{8}, J 9.2\right), 3.79 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right)$, $4.58 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.3\right), 5.31 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.8,1.2\right), 5.75 \mathrm{~d} . \mathrm{d}$ $\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.8,1.5\right.$ and 1.3$), 6.50 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.1\right), 6.60 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{2}, J 8.1\right), 6.64 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2^{\prime}, 6^{\prime}}, J 8.4\right), 6.94 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{3^{\prime}, 5^{\prime}}, J 8.5\right)$
XXI	85	$\begin{aligned} & 188-190 \\ & \text { (ethanol) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}, \\ & 634.82, \\ & 394(29), 393 \\ & (100), 152(36), \\ & 107(12), 42(14), \\ & 31(11) \end{aligned}$	$\begin{aligned} & 723,773,833, \\ & 980,1013,1034, \\ & 1054,1105,1247, \\ & 1512,1596,1615, \\ & 1630,2936,3010 \\ & 3425 \end{aligned}$	$0.93 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.71 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.80 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.6,5.2,1.8\right), 2.10$ d.t $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.6\right.$, $12.0,5.6), 2.30 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.35 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{10}, J_{\text {gem }} 18.7\right)$, $2.49 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{16}\right), 2.50$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.2, J_{\text {vic }} 12.0\right.$ and $1.8), 3.03 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{7}\right), 3.06 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9}, J 5.6\right), 3.07 \mathrm{~m}(4 \mathrm{H}$, $\left.2 \mathrm{CH}_{2}\right), 3.20 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\text {gem }} 18.7\right), 3.49 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right)$, $3.35 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.88 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J 7.2), 4.00 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 9.5,6.8,2.2\right), 4.59 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.4\right)$, $5.41 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.85 \mathrm{d.d}\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and 1.4$), 6.52 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.2\right), 6.61 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right), 6.79 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2,} 6^{\prime}, J 8.5\right)$, 7.08 d ($2 \mathrm{H}, \mathrm{H}^{3^{\prime,}, 5^{\prime}}, J 8.6$)
XXII	73	$\begin{aligned} & 249-250 \\ & \text { (ethanol) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}, \\ & 530.24167 / 530.24 \mathrm{~g} \\ & 180, \\ & 530(38), 311 \\ & (45), 310(87), \\ & 174(41), \\ & 121(100), 91(35) \end{aligned}$	$\begin{aligned} & 795,880,905, \\ & 4935,961,1026, \\ & 1050,1086,1108, \\ & 1600,1628,1685, \\ & 3024,3082,3416 \end{aligned}$	1.85 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.2,5.9\right.$ and 1.7), 1.96 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}\right.$, $J 13.2,12.3,3.8), 2.44 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.43 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{10}\right)$, 2.46 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J 12.6,5.9,3.8\right), 2.55$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}\right.$, $J_{\text {gem }} 12.6, J_{\text {vic }} 12.3$ and 1.7$), 2.70 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 9.6,7.3,1.1\right)$, $3.21 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\mathrm{gem}} 18.7, J 1.0\right), 3.66 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right)$, $3.79 \mathrm{~s}, 3.80 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3,2^{\prime}}\right), 4.01 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 9.6\right), 4.18 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J 6.6\right), 4.28 \mathrm{~d}, 4.61 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 15.2\right), 4.51 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{5 \beta}, J 1.5\right), 4.86 \mathrm{~d}(1 \mathrm{H}, \mathrm{OH}, J 2.5), 5.25 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 7.3\right.$, 2.5), 5.48 d.d $\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.9,1.2\right), 5.96$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.9,1.3\right.$ and 1.5$), 6.55 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{l}, J 8.2\right), 6.63 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right), 6.81 \mathrm{dd}$ $\left(1 \mathrm{H}, \mathrm{H}^{3^{\prime}}, J 7.2,1.4\right), 6.85$ d.t $\left(1 \mathrm{H}, \mathrm{H}^{5^{\prime}}, J 7.2,7.0\right.$ and 1.4$), 7.16$ d.d $\left(1 \mathrm{H}^{\prime} \mathrm{H}^{6^{\prime}}, J 7.2,1.5\right), 7.19$ d.t $\left(1 \mathrm{H}, \mathrm{H}^{4^{\prime}}, J 7.2,7.0\right.$ and 1.5$)$
XXV	92	$\left\|\begin{array}{l} 228-230 \\ \text { (ethanol) } \end{array}\right\|$	$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4}, \\ & 486.25184 / \\ & 486.25117, \\ & 486(1.4), 380 \\ & (29), 379(100), \\ & 152(58), 104 \\ & (17) \end{aligned}$	$\begin{aligned} & 701,727,771, \\ & 800,833,883, \\ & 937,945,980, \\ & 1031,1050,1102, \\ & 1125,1217,1233, \\ & 1250,1321,1613, \\ & 1636,3032,3230, \\ & 3428 \end{aligned}$	1.85 d.d.d. $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 12.9,6.2,2.8\right), 2.04 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{15}\right), 2.14 \mathrm{~m}$ $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{10,16}\right), 2.35 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.54$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.8, J_{\text {vic }} 12.2\right.$ and 2.8$), 2.81$ d.t $\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 7.1\right.$ and 2.1), $3.06 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 5.1\right), 3.12 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{3^{\prime}, 2^{\prime}}\right), 3.28 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{10 \beta}, J_{\mathrm{gem}} 18.2\right), 3.35 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J 6.8\right), 3.46 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{2,3}, 3^{\prime}\right)$, $3.48 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{8}, J 6.8,3.4,2.6\right), 4.61 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.4\right), 5.30 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 7.2\right), 5.71 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{18}\right.$, $J 7.2$ and 1.4$), 6.47 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 6.8\right), 6.64 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 6.8\right)$, $6.70 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2,}, 6^{\prime \prime}, J 7.4\right), 6.99 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{3}\right.$
XXVII	92	$\begin{gathered} \text { 161-164 } \\ \text { (ethyl } \\ \text { acetate) } \end{gathered}$	$\begin{aligned} & \mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}, \\ & 484.19981 / \\ & 484.19795, \\ & 484(36), 308 \\ & (30), 283(40), \\ & 282(100), 227 \\ & (30), 44(26) \end{aligned}$	$\begin{aligned} & 750,794,819, \\ & 934,973,1037, \\ & 1075,1105,1153, \\ & 1228,1250,1501, \\ & 1610,1632,1650, \\ & 1693,1766,3050, \\ & 3080,3439 \end{aligned}$	1.91 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.6,5.4,1.8\right), 2.04$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}\right.$ $J 13.6,12.6,5.4), 2.46 \mathrm{~m}\left(1 \mathrm{H}_{,} \mathrm{H}^{10}\right), 2.51 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{16}\right), 2.52 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.63$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.7, J_{\text {vic }} 12.6\right.$ and 1.8$)$, $2.81 \mathrm{t} . \mathrm{d}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 7.7\right.$ and 3.2$), 2.86 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 8.1\right), 3.28 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\mathrm{gem}} 18.8\right), 3.70$ d.t $\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 7.8\right.$ and 0.9$), 3.95 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J 6.7\right), 4.26 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 8.1\right), 4.49 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.5\right)$, $5.21 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.8\right), 5.59$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.8\right.$ and 1.5$)$, $6.53 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.1\right), 6.68 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.1\right), 7.20 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph})$, $7.27 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph})$

Table 1. (Contd.)

	Yield, \%	$\left\lvert\, \begin{gathered} \mathrm{mp},{ }^{\circ} \mathrm{C}, \\ \text { (solvent) } \end{gathered}\right.$	Formula, m / z calc $/ m / z \exp$ ($I_{\text {rel }} \%$)	IR spectrum, cm^{-1}	${ }^{1} \mathrm{H}$ NMR spectrum, ? , ppm ($J, \mathrm{~Hz}$)
XXVIII	28	$\begin{gathered} \text { 181-183 } \\ \text { (ethyl } \\ \text { acetate) } \end{gathered}$	$\begin{aligned} & \mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}, \\ & 480.22602 / \\ & 480.23060, \\ & 480(33), 395 \\ & (10), 297(26), \\ & 296(100), 241 \\ & (29), 162(18), 42 \\ & (40) \end{aligned}$	$708,727,750$, $775,797,818$, $983,1011,1015$, 1048,1079, 1109,1143, 1499,1596, 1621,1690, $1761,3240,3331$	$0.71 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 0.95 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 1.91$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.4,4.1\right.$ and 1.4$), 1.98$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.4\right.$, $11.8,2.4), 2.26 \mathrm{~m}(1 \mathrm{H}, \mathrm{H}-i-\mathrm{Pr}), 2.44 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.45 \mathrm{~m}$ $\left(2 \mathrm{H}, \mathrm{H}^{10,16}\right), 2.57$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.5, J_{\text {vic }} 11.8\right.$ and 1.4$)$, $2.86 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 8.2\right), 3.24 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\text {gem }} 18.6\right), 3.62 \mathrm{~d} . \mathrm{d}$ and 3.94 d.d $\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 10.6,6.8,4.5\right), 3.72$ d.d $(1 \mathrm{H}, \mathrm{CH}$, $J 6.8$ and 4.5$), 3.79 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.89 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J 6.4\right)$, $4.24 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 8.2\right), 4.43 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.4\right), 5.34 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{19}, J 8.7\right), 5.77$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and 1.4$), 6.53 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{l}\right.$, $J 8.2), 6.62 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right)$
XXIX	56 (73)	$\left\|\begin{array}{l} 228-230 \\ \text { (ethanol) } \end{array}\right\|$	$\begin{aligned} & \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}, \\ & 466.21037 / \\ & 466.21500, \\ & 466(28), 381 \\ & (18), 283(42), \\ & 282(100), 227 \\ & (31), 148(41), 44 \\ & (79) \end{aligned}$	$\begin{aligned} & 724,751,788, \\ & 820,857,933, \\ & 952,1016,1031, \\ & 1077,1105, \\ & 1503,1622, \\ & 1635,1690, \\ & 1764,3441 \end{aligned}$	$0.69 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 0.91 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 1.84$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.3,3.6\right.$ and 1.6$), 1.99 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.3,12.6\right.$, 2.1), $2.21 \mathrm{~m}(1 \mathrm{H}, \mathrm{H}-i-\operatorname{Pr}), 2.38 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{10}\right), 2.41 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 2.42 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{16}\right), 2.53$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.7\right.$, $J_{\text {vic }} 12.6$ and 1.6), $2.98 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 8.2\right), 3.19 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}\right.$, $\left.J_{\text {gem }} 18.4\right), 3.74$ d.d and 3.99 d.d $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}$, $J 7.0$ and 5.6$), 3.89 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J 6.6\right), 4.22 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 8.2\right)$, $4.46 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.4\right), 5.29 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.70 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}$, $\mathrm{H}^{18}, J 8.7$ and 1.4), $6.45 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.2\right), 6.58 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}\right.$, J 8.2)
XXX	69	$\begin{aligned} & 238-241 \\ & \text { (ethanol) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \\ & 500.12 \end{aligned}$	$722,751,802$, $815,891,930$, $960,1000,1030$, 1050,1085, 1106,1160, 1304,1330, 1500,1596, 1610,1667, 1678,1767, $3048,3300,3422$	1.90 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.5,4.0,1.6\right), 2.08 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{15}, J\right.$ $13.5,12.0,5.0), 2.46 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.48 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{10}\right), 2.49$ $\mathrm{m}\left(1 \mathrm{H}, \mathrm{H}^{16}\right), 2.63$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.5, J_{\text {vic }} 12.0\right.$ and 1.6), $2.86 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90$ d.d.t $\left(1 \mathrm{H}, \mathrm{H}^{7}, J 9.0,6.0,1.4\right)$, $3.19 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\text {gem }} 18.7\right), 3.40 \mathrm{~m}, 3.60 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84$ $\mathrm{s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right), 4.10 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 9.0\right), 4.20 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J\right.$ $6.5), 4.50 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J 1.5\right), 5.06 \mathrm{~m}(1 \mathrm{H}, \mathrm{OH}), 4.87 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{2}, J 6.0\right), 5.57 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.9\right), 6.05 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.9\right.$ 1.5 and 1.4), $6.52 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{l}, J 8.2\right), 6.62 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right)$, $7.23 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph}), 7.30 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph})$

[^0]The thebaine adduct with maleic anhydride was prepared as in [15]. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}$ ($J, \mathrm{~Hz}$): 1.89 d.d.d ($1 \mathrm{H}, \mathrm{H}^{15}, J$ 13.3, 4.1 and 1.4), 1.91 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.3,11.2\right.$ and 3.1$), 2.44 \mathrm{~s}\left[3 \mathrm{H},\left(\mathrm{CH}_{3} \mathrm{~N}\right)\right]$, $2.48 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{16}, J 12.3,10.3\right.$ and 1.4$), 2.45 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{10}\right.$, $J 18.6,1.2), 2.58$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.3, J_{\text {vic }} 4.2\right.$ and 1.5$)$, $3.35 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\text {gem }} 18.6\right), 3.30 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 8.6\right), 3.67$ $\mathrm{C}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right), 3.80 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.89 \mathrm{~d}(1 \mathrm{H}$, $\left.\mathrm{H}^{9 \alpha}, J 6.4\right), 4.55 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 8.6\right), 4.59 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}, J\right.$ $1.3), 5.48 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.88 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and $1.3), 6.57 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.2\right), 6.64 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right)$.

Maleimides IIb-III. To a solution of 0.02 mol of maleic anhydride in 80 ml of acetic acid was added 0.02 mol of amine. The reaction mixture was boiled for $2-10 \mathrm{~h}$ (TLC monitoring). The solvent was removed in a vacuum, water was eliminated from the residue by an azeotropic distillation with benzene, then the residue was dissolved in a minimum amount of chloroform, and the solution was passed through a bed of silica gel. The chloroform was evaporated in a vacuum, the residue was ground with ether to isolate the corresponding maleimide as a solid substance that was recrystallized from an

Table 2. ${ }^{13} \mathrm{C}$ NMR spectra of N^{\prime}-substituted $7 \alpha, 8 \alpha$-succinimido- $6 \alpha, 14 \alpha$-endo-ethenotetrahydrothebaines III, IV, VI-XI, XIV, XVI-XVIII, δ, ppm $^{\text {a }}$

Atom no.	III	IV	VI	VII	VIII	IX	X	XI	XII	XIV	XVI	XVII	XVIII
1	119.85	119.81	119.49	119.77	119.81	119.68	119.74	119.78	120.13	119.84	119.80	119.72	119.80
2	113.43	113.39	113.17	113.48	113.42	113.34	113.31	113.49	114.17	113.58	114.43	113.53	113.42
3	141.93	142.04	141.61	141.95	142.00	141.85	141.94	142.02	142.17	142.11	142.05	141.92	141.96
4	147.68	147.75	147.38	147.66	147.69	147.59	147.67	147.80	147.71	147.77	147.63	147.66	147.67
5	90.48	90.48	90.37	90.78	90.81	90.68	90.81	90.68	90.55	90.39	90.99	90.79	90.75
6	80.59	80.53	80.16	80.44	80.48	80.34	80.45	80.54	79.93	80.52	80.52	80.43	80.49
7	41	41.1	40.8	41.25	41.27	41.13	41.19	41.28	42.71	40.95	39.69	39.85	41.23
8	42.20	42.1	41.76	42.03	42.12	41.98	42.07	42.24	43.43	43.15	41.23	41.24	42.06
9	58.16	56.96	56.53	56.86	56.89	56.71	56.85	56.93	56.59	56.33	56.95	56.82	56.87
10	22	22.3	21.9	22.25	22.28	22.15	22.61	22.31	22.50	22.46	22.36	22.22	22.26
11	127.38	128.98	127.18	127.40	127.44	127.40	127.46	127.56	127.19	129.21	127.53	127.44	127.48
12	132	132	132	132.46	132.49	132.46	132.56	132.64	131.99	133.26	131.65	132.50	132.51
13	47.7	47.6	47.3	47.68	47.78	47.61	47.72	47.78	47.95	47.68	47.75	47.66	47.73
14	45.13	44.89	44.53	44.83	44.89	44.73	44.80	44.92	44.97	44.84	45.03	44.83	44.88
15	33	33	33	33.35	33.48	33	33.42	33.48	33.50	33.03	33.47	33.37	33.41
16	44.91	45.0	44.67	44.95	44.99	44.87	44.95	45.06	44.87	45.08	44.94	44.92	44.98
$17-\mathrm{NCH}_{3}$	43.09	43.13	42.87	43.10	43.19	43.05	43.13	43.21	43.12	41.66	43.15	43.08	43.17
18	133.5	133.0	132.7	133.06	133.16	133.07	133.04	133.21	134.28	133.26	133.15	133.08	133.15
19	128.77	127.94	128.10	128.65	128.75	128.61	128.79	128.88	129.26	129.56	128.68	128.61	128.71
$\mathrm{OCH}_{3} \mathrm{C}^{3}$	56.78	56.27	55.95	56.28	56.30	56.19	56.23	56.35	56.45	56.99	56.45	56.28	56.33
$\mathrm{OCH}_{3} \mathrm{C}^{6}$	51.52	51.47	51.19	51.56	51.62	51.46	51.54	51.50	51.95	51.41	51.63	51.52	51.57
$\mathrm{CH}_{2} \mathrm{~N}$	-	41.67	39.25	39.84	39.65	38.16	37.16	36.19	-	-	39.79	39.85	39.94
$\mathrm{CH}_{2} \mathrm{R}$	-	-	32.99	32.38	32.53	26.88	35.72	55.85	-	61.47	32.38	32.47	32.54
$\mathrm{C}^{2^{\prime}}$	172.56	173.73	173.46	173.88	173.84	173.61	173.81	174.05	167.46	175.06	173.88	173.74	173.84
C^{2}	175.93	176.96	176.77	177.20	177.15	176.92	177.21	177.34	170.91	178.65	176.82	177.09	177.19

${ }^{\text {a }}$ Signals of other carbon atoms, δ, ppm: III, $122.10 \mathrm{~s}, 127.69 \mathrm{~d}, 131.92 \mathrm{~d}, 132.25 \mathrm{~s}(\mathrm{Ar}) ; \mathbf{I V}, 56.95 \mathrm{q}, 113.63 \mathrm{~d}, 113.91 \mathrm{~d}, 128.98 \mathrm{~s}, 129.95 \mathrm{~d}$, 158.97 s (Ar); VI, $126.14 \mathrm{~d}, 128.01 \mathrm{~d}, 128.36 \mathrm{~d}, 137.27 \mathrm{~s}(\mathrm{Ar}) ;$ VII, $115.16 \mathrm{~d}, 129.80 \mathrm{~d}, 129.50 \mathrm{~s}, 154.26 \mathrm{~s}$ (Ar); VIII, $115.07 \mathrm{~d}, 115.23 \mathrm{~d}$, $130.12 \mathrm{~d}, 130.18 \mathrm{~d}, 133.25 \mathrm{~s}, 162.54 \mathrm{~s}(\mathrm{Ar}) ; \mathrm{IX}, 115.16 \mathrm{~d}, 123.77 \mathrm{~d}, 124.53 \mathrm{~s}, 128.23 \mathrm{~d}, 130.90 \mathrm{~d}, 160.13 \mathrm{~s}$ (Ar); X, $22.04 \mathrm{t}, 22.61 \mathrm{t}$, $25.14 \mathrm{t}, 27.46 \mathrm{t}, 123.73 \mathrm{~d}, 133.78 \mathrm{~s} ; \mathbf{X I}, 45.10 \mathrm{q}, 45.03 \mathrm{q}\left(\mathrm{CH}_{3}\right) ; \mathbf{X I V}, 19.81 \mathrm{q}, 19.93 \mathrm{q}\left(\mathrm{CH}_{3}\right), 26.06 \mathrm{~d}(\mathrm{CH}), 60.53 \mathrm{~d}(\mathrm{CH}) ; \mathbf{X V I}, 27.64 \mathrm{t}$, $29.22 \mathrm{t}, 33.12 \mathrm{t}, 66.57 \mathrm{t}\left(\mathrm{CH}_{2}\right), 114.22 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}, 5^{\prime}}\right), 129.56 \mathrm{~s}\left(\mathrm{C}^{l^{\prime}}\right), 29.62 \mathrm{~d}\left(\mathrm{C}^{2}, \sigma^{\prime}\right), 157.34 \mathrm{c}\left(\mathrm{C}^{4}\right) ;$ XVII, $25.84 \mathrm{t}, 29.56 \mathrm{t}, 44.67 \mathrm{t}, 64.14 \mathrm{t}, 66.72 \mathrm{t}$, $67.30 \mathrm{t}\left(\mathrm{CH}_{2}\right), 114.34 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}, 5^{\prime}}\right), 129.65 \mathrm{~d}\left(\mathrm{C}^{2^{\prime}, 6^{\prime}}\right), 131.54 \mathrm{~s}\left(\mathrm{C}^{I^{\prime}}\right), 155.54 \mathrm{~s}\left(\mathrm{C}^{4}\right)$; XVIII, $25.81 \mathrm{t}, 26.71 \mathrm{t}, 51.92 \mathrm{t}, 51.86 \mathrm{t}, 61.65 \mathrm{t}$, $67.44 \mathrm{t}\left(\mathrm{CH}_{2}\right), 114.31 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}, 5}\right), 129.54 \mathrm{~d}\left(\mathrm{C}^{2^{\prime}, 6^{\prime}}\right), 131.13 \mathrm{~s}\left(\mathrm{C}^{l^{\prime}}\right), 157.56 \mathrm{~s}\left(\mathrm{C}^{4^{\prime}}\right)$.
appropriate solvent. N-(4-Methoxybenzyl)maleimide (III). Yield 56%, mp $101-103^{\circ} \mathrm{C}$ (from ether) (publ.: mp $\left.101.5-103^{\circ} \mathrm{C}[21]\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}$: $2.70 \mathrm{~m}, 2.84 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.56 \mathrm{~s}$ $\left(2 \mathrm{H}, \mathrm{H}^{3,4}\right), 6.79 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{2}, 6^{\prime}\right), 7.22 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{3^{3}, 5^{\prime}}\right)$.
\boldsymbol{N}-(2-Methoxybenzyl)maleimide (IIc). Yield 68\%, $\mathrm{mp} 108-110^{\circ} \mathrm{C}$ (from ethyl acetate). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 3.68 \mathrm{~d}, 3.75 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J 7.6), 3.87 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.60 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{H}^{3}, 4\right), 6.96 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{H}^{3^{\prime}, 5^{\prime}}\right), 7.12 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{4}, 6^{\prime}\right)$.
N-(Phenethyl)maleimide (IId). Yield 82%, mp 108$110^{\circ} \mathrm{C}$ (from ethanol) (publ.: $\mathrm{mp} 112^{\circ} \mathrm{C}$ [22]). IR spectrum, $\mathrm{Cm}^{-1}: 743,824,842,954,1085,1138,1583,1606,1705$, 1755. UV spectrum, $\lambda_{\max }, \mathrm{nm}(\lg$ å): $208(4.48), 248$ (3.28),

289 (3.02). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.84 \mathrm{~d}$, $2.89 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 7.8 \mathrm{~Hz}\right), 3.68 \mathrm{~d}, 3.75 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J 7.8 \mathrm{~Hz}), 6.59 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{H}^{3,4}\right), 7.19 \mathrm{~m}(5 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $34.27 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 38.87 \mathrm{t}$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 126.46 \mathrm{~d}\left(\mathrm{C}^{4}\right), 128.34 \mathrm{~d}, 128.61 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}, 5,2^{2}, 6}\right)$, $137.67 \mathrm{~s}\left(\mathrm{C}^{\prime}\right), 133.81 \mathrm{~d}\left(\mathrm{C}^{3}, 4\right), 170.38 \mathrm{~d}\left(\mathrm{C}^{2,5}\right)$.
\boldsymbol{N}-(4-Hydroxyphenethyl)maleimide (IIe). Yield $62 \%, \mathrm{mp} 174-176^{\circ} \mathrm{C}$ (from ethanol) (publ.: mp 175$\left.178^{\circ} \mathrm{C}[23]\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}$: $2.88 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.60 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{H}^{3}, 4\right)$, $6.88 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{2}, \sigma^{\prime}, J 8.5 \mathrm{~Hz}\right), 7.08 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}^{3^{\prime} 5^{\prime}}, J 8.5 \mathrm{~Hz}\right)$.
\boldsymbol{N}-(4-Fluorophenethyl)maleimide (IIf). Yield 68%, $\mathrm{mp} 148-150^{\circ} \mathrm{C}$ (from ethyl acetate). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.84 \mathrm{~d}, 2.89 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 7.6 \mathrm{~Hz}\right)$,

Table 3. ${ }^{13} \mathrm{C}$ NMR spectra of N^{\prime}-substituted $7 \alpha, 8 \alpha$-pyrrolidino- (XIX-XXI), $7 \alpha, 8 \alpha$-(2'-hydroxy-5-oxo)pyrrolidino- (XXII, XXIII) -endo-ethenotetrahydrothebaines and 6-demethyltetrahydrothebaines XXVIII, XXX and the corresponding oripavines XXIVXXVII, XXIX, $\delta, \mathrm{ppm}^{\mathrm{a}}$

Atom no.	XIX	XX	XXI	XXII	XXIII	XXIV	XXV	XXVI	XVII	XXVIII	XXIX	XXX
1	119.21	119.10	119.53	119.72	119.79	119.80	120.82	120.42	120.36	119.80	120.40	120.02
2	113.28	112.94	113.52	113.34	113.63	116.57	117.85	117.53	117.22	113.93	117.41	116.22
3	141.93	141.84	142.04	141.75	141.79	137.79	139.93	138.01	137.91	142.07	138.03	141.18
4	146.90	147.75	147.54	147.58	147.63	148.41	148.14	146.46	146.32	147.88	146.43	147.28
5	93.81	92.98	91.89	93.34	93.40	93.24	93.98	94.94	95.33	95.31	95.13	97.22
6	81.28	81.63	81.05	81.75	81.88	81.50	82.79	76.08	75.80	75.69	76.04	79.12
7	40.22	41.93	40.72	44.36	41.31	42.58	43.67	45.30	44.99	44.84	45.03	45.05*
8	43.57	40.69	39.34	38.85	38.81	40.33	41.27	41.61	41.26	40.89	41.24	44.52*
9	59.08	58.71	58.58	56.48	56.56	59.12	60.10	56.92	56.92	56.68	56.88	58.06
10	22.14	22.02	22.10	22.15	22.21	22.42	23.15	22.59	22.58	22.36	22.50	22.27
11	127.71	127.69	127.12	128.18	128.17	127.15	127.77	126.42	127.29	127.32	126.54	126.82
12	133.90	134.19	133.22	133.03	133.08	133.79	131.01	132.28	132.36	132.61	132.53	132.03
13	47.98	48.30	48.35	48.06	48.09	48.26	48.36	47.66	47.79	47.54	47.79	48.22
14	45.30	44.46	44.76	45.08*	45.10*	45.42	46.10	44.99	45.02	44.88	45.07	47.25
15	32.96	32.62	32.37	33.42	33.48	32.80	33.72	32.31	33.21	32.68	32.36	33.38
16	49.86*	45.17	44.88	45.01*	45.08*	45.42	46.58	43.10	45.49	45.47	45.50	46.66
$17-\mathrm{NCH}_{3}$	42.22	43.54	43.48	43.16	44.32	43.50	43.63	45.30	43.14	43.11	43.18	43.10
18	134.49	135.34	134.96	133.10	133.19	134.61	134.99	133.73	133.37	133.62	133.90	133.80
19	129.18	130.04	130.21	127.75	127.30	129.03	131.43	130.22	130.43	131.41	130.52	128.88
$\mathrm{OCH}_{3} \mathrm{C}^{3}$	56.42	56.30	56.41	56.36	56.46	-	-	-	-	56.45	-	56.19
$\mathrm{OCH}_{3} \mathrm{C}^{6}$	51.99	51.48	51.83	52.92	53.05	51.60	52.33	-	-		-	55.05
$\mathrm{CH}_{2} \mathrm{~N}$	-	56.10*	55.96*	37.99	38.81	-	39.86	-	39.74	-	-	37.41
$\mathrm{CH}_{2} \mathrm{R}$	-	33.94	31.12	-	33.66	-	33.71	-	32.51	61.31	60.51	32.12
$\mathrm{C}^{2 \prime}$	49.94*	56.38*	55.82*	82.23	83.12	50.98	-	175.84*	177.01*	178.42*	178.48*	86.12
C^{5}	51.00	58.11	56.22	172.36	172.34	51.53	-	175.92*	177.28*	178.51*	178.40*	177.12

${ }^{\text {a }}$ The starred signals should probably be interchanged within the same column. The signals of the other carbon atoms, δ, ppm: XIX, $108.15 \mathrm{~s}\left(\mathrm{C}^{l^{\prime}}\right), 114.27 \mathrm{~d}, 112.79 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}, 5^{\prime}}\right), 128.87 \mathrm{~d}, 131.47 \mathrm{~d}\left(\mathrm{C}^{2,} 6^{\prime}\right), 148.12 \mathrm{~s}\left(\mathrm{C}^{4}\right) ; \mathbf{X X}, 115.32 \mathrm{~d}, 129.95 \mathrm{~d}, 129.38 \mathrm{~s}, 155.02 \mathrm{~s}$ (Ar); XXI, $27.86 \mathrm{t}, 29.26 \mathrm{t}, 33.34 \mathrm{t}, 67.35 \mathrm{t}\left(\mathrm{CH}_{2}\right), 114.86 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}, 5^{\prime}}\right), 129.77 \mathrm{~s}\left(\mathrm{C}^{l^{\prime}}\right), 130.22 \mathrm{~d}\left(\mathrm{C}^{2,6}\right), 156.84 \mathrm{~s}\left(\mathrm{C}^{4}\right) ;$ XXII, $55.36 \mathrm{q}\left(\mathrm{CH}_{3}\right), 110.19 \mathrm{~d}$, $120.24 \mathrm{~d}, 124.30 \mathrm{~s}, 128.33 \mathrm{~d}, 129.64 \mathrm{~d}, 157.27 \mathrm{~s}$ (Ar); (XXIII) - $126.12 \mathrm{~d}, 128.17 \mathrm{~d}, 128.28 \mathrm{~d}, 128.32 \mathrm{~d}, 128.62 \mathrm{~d}, 139.02 \mathrm{~s}$ (Ph); XXIV, $126.49 \mathrm{~d}, 128.01 \mathrm{~d}, 128.96 \mathrm{~d}, 137.48 \mathrm{~s}(\mathrm{Ar}) ; \mathbf{X X V}, 115.46 \mathrm{~d}, 129.18 \mathrm{~d}, 129.56 \mathrm{~s}, 155.18 \mathrm{~s}(\mathrm{Ar}) ; \mathbf{X X V I}, 137.29 \mathrm{~s}\left(\mathrm{C}^{l^{\prime}}\right), 126.35 \mathrm{~d}, 128.68 \mathrm{~d}$ $\left(\mathrm{C}^{2}, 3^{\prime}, 5^{\prime}, 6^{\prime}\right), 128.29 \mathrm{~s}\left(\mathrm{C}^{4}\right)$; XXVII, $127.35 \mathrm{~d}, 128.51 \mathrm{~d}, 128.88 \mathrm{~d}, 136.43 \mathrm{~s}$ (Ar); XXVIII, $19.64 \mathrm{q}, 19.85 \mathrm{q}\left(\mathrm{CH}_{3}\right), 26.00 \mathrm{~d}(\mathrm{CH}), 60.64 \mathrm{~d}(\mathrm{CH})$; XXIX, $19.88 \mathrm{q}, 20.03 \mathrm{q}\left(\mathrm{CH}_{3}\right), 26.34 \mathrm{~d}(\mathrm{CH}), 60.70 \mathrm{~d}(\mathrm{CH})$; XXX, $126.24 \mathrm{~d}, 126.32 \mathrm{~d}, 128.45 \mathrm{~d}, 128.70 \mathrm{~d}, 138.46 \mathrm{~s}(\mathrm{Ph})$.
$3.71 \mathrm{~d}, 3.73 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J 7.8 \mathrm{~Hz}\right), 6.62 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{H}^{3,4}\right)$, $6.93 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{2}, 6^{\prime}\right), 7.12 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}^{3^{3}, 5^{\prime}}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $33.50 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 38.92 \mathrm{t}$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 115.15 \mathrm{~d}, 115.36 \mathrm{~d}\left(\mathrm{C}^{3}, 5^{\prime}\right), 130.10 \mathrm{~d}, 130.18 \mathrm{~d}$ $\left(\mathrm{C}^{2}, 6^{\prime}\right), 133.35 \mathrm{~s}\left(\mathrm{C}^{I^{\prime}}\right), 133.91 \mathrm{~d}\left(\mathrm{C}^{3,4}\right), 160.42 \mathrm{~s}\left(\mathrm{C}^{4}\right)$, $170.38 \mathrm{~d}\left(\mathrm{C}^{2,5}\right)$.

N -(2-Fluorophenethyl)maleimide (IIg). Yield 65\%, $\mathrm{mp} 138-140^{\circ} \mathrm{C}$ (from ethyl acetate). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.84 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.29 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.62 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{H}^{3,4}\right), 6.90 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph}), 7.18 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph})$.
N-[2-(Cyclohex-1-enyl)ethyl]maleimide (IIh). Yield 62%, mp $172-175^{\circ} \mathrm{C}$ (from ether). ${ }^{1} \mathrm{H}$ NMR
spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $1.62 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}^{4}, 5^{\prime}\right), 1.99 \mathrm{~m}$ $\left(4 \mathrm{H}, \mathrm{H}^{3}, 6^{\prime}\right), 2.14 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.33 \mathrm{~m}$ $\left(1 \mathrm{H}, \mathrm{H}^{2}\right), 6.64 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{H}^{3,4}\right)$.
N-[2-(N, N-Dimethylamino)ethyl]maleimide (IIi). Yield 58%, mp $175-178^{\circ} \mathrm{C}$ (from ethanol). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.22$ c $\left(6 \mathrm{H}, 2 \mathrm{CH}_{3} \mathrm{~N}\right), 2.22 \mathrm{~m}$ $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.39 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.56 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{H}^{3}, 4\right)$.

Thebaine adducts with maleimides. To a solution of 5 mmol of thebaine (\mathbf{I}) in 15 ml of ethanol 5.2 mmol of an appropriate maleimide in 10 ml of ethanol was added. The reaction mixture was heated at reflux for 39 h (TLC monitoring). On cooling the precipitated crystals
of adducts III-XI were filtered off, the mother liquor was evaporated, and the oily compound obtained was subjected to column chromatography on alkaline aluminum oxide to isolate additionally $15-20 \%$ of the adduct. Yields and spectral characteristics of N^{\prime}-substituted $\left[7 \alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]$ succinimido-6,14-endo-ethenotetrahydrothebaines III-XI are presented in Tables 1, 2. ${ }^{19} \mathrm{~F}$ NMR spectrum, δ, ppm: $45.38 \mathrm{~m}\left(\mathrm{~F}^{4}, \mathbf{V I I I}\right), 43.90 \mathrm{~m}\left(\mathrm{~F}^{2}, \mathbf{I X}\right)$.
$\left[7 \alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]\left\{N^{\prime}-[(1 S)-1-H y d r o x y m e t h y l-2-\right.$ methylpropyl]succinimido\}-6,14-endo-etheno-6,7,8,14-tetrahydrothebaine (XIV). To a solution of $1.0 \mathrm{~g}(2.42 \mathrm{mmol})$ of compound XII in 45 ml of freshly distilled toluene was added under argon $0.25 \mathrm{~g}(2.4 \mathrm{mmol})$ of S-valinol (XIII). The reaction mixture was boiled at stirring for 2 h . Into the homogeneous solution obtained $0.48 \mathrm{~g}(4.8 \mathrm{mmol})$ of triethylamine and molecular sieves (3 A) were added, and the reaction mixture was boiled for another 17 h . On cooling the reaction mixture was washed with water and dried with MgSO_{4}. The solvent was evaporated, the residue was crystallized from ethanol. We filtered off 0.80 g (65%) of compound XIV. The chromatography of the mother liquor on a column charged with aluminum oxide afforded in succession 0.085 g (7.2\%) of adduct XIV and $0.29 \mathrm{~g}(20 \%)$ of $\mathbf{7 \alpha , 8 \alpha}$ bis $\left\{N^{\prime}\right.$-[(1S)-1-hydroxymethyl-2-methylpropyl]aminocarbonyl $\}-6,14-e n d o-e t h e n o-6,7,8,14-$ tetrahydrothebaine (XV). mp $240-242^{\circ} \mathrm{C}$ (from ethanol). IR spectrum, $\mathrm{cm}^{-1}: 755,797,923,986,1012$, $1040,1055,1083,1107,1146,1156,1210,1252,1499,1537$, $1568,1598,1654,3075,3384$. UV spectrum, $\lambda_{\text {max }}$, nm $(\log \varepsilon): 215$ (4.26), 245 (3.28), 286 (2.18). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \operatorname{ppm}(J, \mathrm{~Hz}): 0.80 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $J 7.0), 0.86 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 1.01 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right)$, $1.07 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J 7.0\right), 1.63 \mathrm{~m}[1 \mathrm{H}, \mathrm{CH}(i-\mathrm{Pr})]$, 1.81 d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.5,4.2\right.$ and 1.4$), 1.99 \mathrm{~m}[1 \mathrm{H}$, $\mathrm{CH}(i-\mathrm{Pr})], 2.06$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{15}, J 13.5,10.2\right.$ and 3.1$)$, $2.32 \mathrm{~s}\left[3 \mathrm{H},\left(\mathrm{CH}_{3} \mathrm{~N}\right)\right], 2.41 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{16}, J 12.2,10.3\right.$ and $1.4), 2.45 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{10}\right), 2.51$ d.d.d $\left(1 \mathrm{H}, \mathrm{H}^{16}, J_{\text {gem }} 12.2\right.$, $J_{\text {vic }} 4.2$ and 1.5$), 3.03 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), 3.16 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{10 \beta}, J_{\text {gem }}\right.$ $18.6), 3.28 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{7}, J 11.6\right), 3.39 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, \mathrm{CH}, J 7.6$ and 5.3$), 3.56 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{6}\right), 3.55 \mathrm{~m}$ and $3.76 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.67 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), 3.79 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right), 3.81 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{9 \alpha}, J 6.4\right), 4.08 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{8}, J 11.6\right), 4.62 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{5 \beta}\right.$, $J 1.3), 5.82 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{19}, J 8.7\right), 5.90$ d.d $\left(1 \mathrm{H}, \mathrm{H}^{18}, J 8.7\right.$ and 1.3$), 6.10 \mathrm{~m}(2 \mathrm{H}, \mathrm{NH}), 6.52 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{1}, J 8.2\right), 6.60 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}^{2}, J 8.2\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}:$ $17.88 \mathrm{q}, 18.52 \mathrm{q}, 19.01 \mathrm{q}, 19.54 \mathrm{q}\left(\mathrm{CH}_{3}\right), 22.36 \mathrm{t}\left(\mathrm{C}^{10}\right)$, $28.58 \mathrm{~d}, 29.73 \mathrm{~d}[\mathrm{CH}(i-\mathrm{Pr})], 32.92 \mathrm{t}\left(\mathrm{C}^{15}\right), 43.43 \mathrm{q}\left(\mathrm{CH}_{3} \mathrm{~N}\right)$, $43.88 \mathrm{~s}\left(\mathrm{C}^{13}\right), 45.22 \mathrm{t}\left(\mathrm{C}^{16}\right), 47.28 \mathrm{~s}\left(\mathrm{C}^{14}\right), 50.30 \mathrm{~d}\left(\mathrm{C}^{8}\right)$,
$51.92 \mathrm{~d}\left(\mathrm{C}^{7}\right), 52.08 \mathrm{q}\left(\mathrm{C}^{6} \mathrm{OCH}_{3}\right), 56.42 \mathrm{q}\left(\mathrm{C}^{3} \mathrm{CH}_{3} \mathrm{O}\right)$, $57.28 \mathrm{~d}\left(\mathrm{C}^{9}\right), 58.60 \mathrm{~d}(2 \underline{\mathrm{CHN}}), 60.45 \mathrm{t}, 63.65 \mathrm{t}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, 80.19 s ($\left.\mathrm{C}^{6}\right), 92.93 \mathrm{~d}\left(\mathrm{C}^{5}\right), 113.46 \mathrm{~d}\left(\mathrm{C}^{2}\right), 119.49 \mathrm{~d}\left(\mathrm{C}^{l}\right)$, $124.00 \mathrm{~d}\left(\mathrm{C}^{19}\right), 127.84 \mathrm{C}\left(\mathrm{C}^{11}\right), 133.57 \mathrm{~s}\left(\mathrm{C}^{12}\right), 139.64 \mathrm{~d}$ $\left(\mathrm{C}^{18}\right), 141.89 \mathrm{C}\left(\mathrm{C}^{3}\right), 147.67 \mathrm{~s}\left(\mathrm{C}^{4}\right), 172.50 \mathrm{~s}\left(\mathrm{C}^{2}\right), 178.15$ $\mathrm{s}\left(\mathrm{C}^{5 "}\right) . \mathrm{C}_{33} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{7}$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 494$ (100), 409 (46), 319 (63), 311 (39), 310 (73), 276 (64), 255 (57), 216 (34), 162 (37), 60 (55) and 42 (96).
[7 $\left.\alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]-N^{\prime}$-[4-(Bromobutoxy)phenethyl]-succinimido-6,14-endo-etheno-6,7,8,14-tetrahydrothebaine (XVI). To a solution of $0.53 \mathrm{~g}(1 \mathrm{mmol})$ of compound VII in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 8 ml of 24% aqueous $\mathrm{NaOH}, 0.01 \mathrm{~g}$ of tetrabutylammonium bromide, and $0.25 \mathrm{~g}(1.3 \mathrm{mmol})$ of 1,4-dibromobutane. The reaction mixture was stirred at room temperature for 24 h , then diluted with 50 ml of water, and the reaction products were extracted into dichloromethane. The organic solution was washed in succession with water and saturated NaCl solution, dried over MgSO_{4}, and the solvent was evaporated in a vacuum. The obtained crude product (0.8 g) was ground into amorphous powder in a mixture acetone -hexane. On recrystallization from ethyl acetate we isolated $0.54 \mathrm{~g}(82 \%)$ of compound XVI. UV spectrum, $\lambda_{\text {max }}$, nm (log å): 220 (4.21), 250 (2.48), 278 (1.88).
[7 $\alpha, 8 \alpha, 3^{\prime}, 4$ ']- N^{\prime}-\{4-[4-(2-Aminoethoxy)butoxy]-phenethyl\}- and $\left[7 \alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]-N^{\prime}-\{4-[4-(2-h y d r o x y-$ ethylamino)butoxy]phenethyl\}succinimido-6,14-endo-etheno-6,7,8,14-tetrahydrothebaines (XVII, XVIII). To a solution of $0.65 \mathrm{~g}(1 \mathrm{mmol})$ of compound XVI in 30 ml 0.82 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the reaction mixture was heated at reflux for 8th till complete disappearance of the initial compound (TLC monitoring). On cooling the precipitate was filtered off, washed with acetone, the compound acetone solution was evaporated in a vacuum, the residue was subjected to chromatography on aluminum oxide. We isolated 0.18 g (29%) of amine XVII and $0.23 \mathrm{~g}(37 \%)$ of compound XVIII. UV spectrum, $\lambda_{\max }$, nm (log å): 215 (4.26), 245 (3.28), 286 (2.18) (XVII); 222 (4.32), 245 (2.28), 284 (2.98) (XVIII).

Reduction of adducts III, VII, and XVI by LiAlH_{4}. To a solution of 2.5 mmol of adducts III or VII in 20 ml of anhydrous THF was added by small portions in an argon flow 0.2 g of LiAlH_{4}. The reaction mixture was heated at reflux for $6-8 \mathrm{~h}$ (TLC monitoring). On cooling 0.2 ml of water was cautiously added to the reaction mixture, the mixture was stirred for 20 min , the precipitate formed was filtered off, boiled with THF ($3 \times 10 \mathrm{ml}$), the mother liquors were combined, washed with a saturated

NaCl solution, the organic layer was separated, dried with MgSO_{4}, and evaporated in a vacuum. The residue was subjected to column chromatography on aluminum oxide. Thus we isolated N^{\prime}-substituted $\left[7 \boldsymbol{\alpha}, 8 \alpha, 3^{\prime} 4^{\prime}\right]$ pyrroli-dino-6,14-endo-etheno-6,7,8,14-tetrahydrothebaines (XIX-XXI).

Reduction of adducts V and VI by NaBH_{4}. In 50 ml of anhydrous THF was dissolved 5.9 mmol of succinimides \mathbf{V} and VI, the solution was cooled to $0^{\circ} \mathrm{C}$, and at stirring in an argon flow $2.24 \mathrm{~g}(59 \mathrm{mmol})$ of NaBH_{4} was added. The reaction mixture was stirred at room temperature for 4 h , then $3 \mathrm{ml}(5.9 \mathrm{mmol})$ of 2.2 M solution of HCl in ethanol was added dropwise. The reaction mixture was stirred for 2 h , then poured in 50 ml of saturated NaHCO_{3} solution. The organic layer was separated, the water layer was extracted with chloroform $(3 \times 50 \mathrm{ml})$. The combined organic solutions were dried over MgSO_{4} and evaporated in a vacuum. The residue was was subjected to column chromatography on aluminum oxide. Thus we isolated N -substituted [7 $\alpha, 8 \alpha, 3{ }^{\prime} 4$ ']-(2' α-hydroxy-5'-oxopyrrolidino)-6,14-endo-etheno-6,7,8,14-tetrahydrothebaines (XXII, XXIII).

O-Demethylation of compounds III, IV, XIV, XIX, XX, and XXIII. To a solution of 2 mmol of compound in 20 ml of chloroform was added at stirring 1 M solution of BBr_{3} in 20 ml of chloroform. The reaction mixture was stirred at room temperature for 3 h , then poured into the cooled to $3-5^{\circ} \mathrm{C}$ diluted (1:1) solution of ammonium hydroxide, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The organic layer was separated, the water layer was extracted with chloroform $(2 \times 15 \mathrm{ml})$. The combined organic solutions were washed with a saturated NaCl solution, and dried over MgSO_{4}. The magnesium sulfate was filtered off, and the solution was passed through a bed $(5.0 \mathrm{~g})$ of alkaline aluminum oxide, evaporated, and the residue was ground with ether. We isolated N -substituted $\left[7 \alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]$ pyrrolidino-6,14-endoethenotetrahydrooripavines XXIV and XXV, 6-demethylN -substituted [7 $\left.\alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]$-succinimido-6,14-endoethenotetrahydrooripavines XXVI, XXVII, and XXIX, [7 $\left.\alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]\left\{N^{\prime}-[(1 S)\right.$-1-hydroxymethyl-2-methylpropyl]succinimido $\}$-6-demethyl-6,14-endo-etheno-6,7,8,14tetrahydrothebaine (XXVIII), and $\left[7 \alpha, 8 \alpha, 3^{\prime}, 4^{\prime}\right]\left(N^{\prime}-\right.$ phenethyl-2' α-hydroxy-5'-oxo)-pyrrolidino-6,14-endoethenotetrahydrothebaine (XXX). Compounds XXVIII and XXIX were separated by column chromatography on aluminum oxide. The treating of succinimide XIV with BBr_{3} under the above conditions and keeping the
reaction mixture at room temperature for 12 h resulted in formation of chromatographically individual 6-demethyloripavine XXIX. The samples for analysis of all compounds were recrystallized from appropriate solvents (Table 1).

The study was carried out under financial support of the Russian Foundation for Basic Research (grant no. 01-03-32431) and INTAS grant no.97-12060.

REFERENCES

1. Lenz, G.R., Evans, S.M., Walters, D.E., and Hopfinger, A.J., in Opiates. Publs. Harcourt Brace Jovanovich, London: Acad. Press. Inc., 1986, p. 65.
2. Lewis, J.W., Drugs and Ale. Dep., 1985, vol. 14, p. 363.
3. Coop, A., Barzetel-Gurshe, I., Burnside, J., Toll, L., Traynor, J.R., Husbands, S.M., and Lewis, J.W., Helv. Chim. Acta, 2000, vol. 83, p. 687.
4. Maat, L., Bioorg. Med. Chem., 1999, vol. 7, p. 529.
5. Marton, J., Simon, C., Hosztafi, S., Czabo, Z., Martin, A., Borsodi, A., and Makleit, S., Bioorg. Med. Chem. Lett., 1997, vol. 5, p. 369.
6. Archer, S., Michael, J., Osei-Gyimah, P., Seyed-Mozaffari, A., Lukin, R.S., Maneckjee, R., Simon, E.J., and Gioannini, T.L., J. Med. Chem., 1985, vol. 28, p. 1950.
7. Tolstikov, G.A., Shults, E.E., London Spirikhin, L.V., Tetrahedron, 1986, vol. 42, p. 591.
8. Tolstikov, G.A., Shul'ts, E.E., Mukhametyanova, T.Sh., and Spirikhin, L.V., Zh. Org. Khim., 1991, vol. 27, p. 273.
9. Tolstikov, G.A., Shul'ts, E.E., Spirikhin, L.V., Mukhametyanova, T.Sh, Tolstikova, T.G., Chertanova, L.F., and Gazikasheva, A.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1992, p. 2565.
10. Tolstikov, G.A., Shults, E.E., Malikova, T.Sh., and Spirikhin, L.V., Mendeleev Commun., 1994, vol. 6, p. 60.
11. Tolstikov, G.A., Tolstikova, T.G., Shul'ts, E.E., Mukhametyanova, T.Sh., Popov, V.G., Davydova, V.A., Lazareva, D.N., and Zarudii, F.S., Khim.-Farm. Zh., 1992, p. 39.
12. Hromatka, O., Sengstschmidt, G., and Eichinger, K., Monatsh. Chem., 1971, vol. 112, 1015; Lewis, J.W., Rushwood, W.I., J. Chem. Soc. C., 1970, 560; Pindur, U., and Keilhofer, D., Lieb. Ann., 1993, p. 947.
13. Shafiee, A., Amanlou, M., Farsam, H., Dehpour, A.R., Mir-Ersha-di, F., and Mani, A.R., Pharm. Acta Helv., 1999, vol. 75, p. 251.
14. Sandermann, W., Ber., 1938, vol. 71, p. 648.
15. Schopf, C., von, Gottberg, K., and Petri, W., Lieb. Ann., 1938, vol. 536, p. 216.
16. Speckamp, W.N. and Hiemstra, H., Tetrahedron, 1985, vol. 41, p. 4367.
17. Rice, K.C., J. Med. Chem., 1977, vol. 20, p. 164.
18. Kopcho, J.J. and Schaeffer, J.C., J. Org. Chem., 1986, vol. 51, p. 1620; Breeden, S.W., Coop, A., Husbans, S.M., Lewis, J.W., Helv. Chim. Acta, 1999, vol. 82, p. 1978.
19. Rubinstein, R., Havin, F., and Ginsburg, D., Tetrahedron,

1974, vol. 30, p. 1201.
20. Meyers, A.I., Dickmann, D.A., and Bailey, T.R., J. Am. Chem. Soc., 1985, vol. 107, p. 7974.
21. Braish, T.F. and Fox, D.E., Synlett., 1992, p. 979.
22. Rangnekar, V.M., Bharmaria, R.P., and Khadze, B.G., Indian J. Chem. B, 1986, vol. 25, p. 342.
23. US Patent 3337584, 1967; Chem. Abstr., 1968, vol. 68, 77793.

[^0]: ${ }^{\text {a }}$ Compound IV, yield 92%, mp 188-190 (from ethyl acetate); compound \mathbf{V}, yield 80%, mp 210-212 (from ethanol); compound VI, yield 96\%, mp 239-241 (from ethanol); compound VII, yield 92\%, mp 278-280 (from ethanol); compound VIII, yield 82\%, mp 212-214 (from ethyl acetate); compound IX, yield 87%, mp 219-220 (from ethyl acetate); compound X, yield $85 \%, \mathrm{mp} 192-195$ (from ethyl acetate); compound XI, yield 85%, mp 188-190 (from ethanol); compound XIX, yield 72%, mp 248-250 (from ethyl acetate); compound XXIII, yield 78\%, mp 185-186 (from mixture ethyl acetate-ether); compound XXIV, yield 79\%, mp 221-222 (from ethanol); compound XXVI, yield 96\%, mp 219-220 (from ethyl acetate).

